

Circuit Diagrams

E-stop button single-channel connection (8 inputs)
BH 5922.08, BH 5922.08/00_, BH 5922.08/10_

E-stop button 2-channel connection (4 inputs)
BH 5922.04/01_, BH 5922.04/11_

E-stop button single-channel connection (16 inputs) BL 5922.16/00_, BL 5922.16/10_

- To monitor max. 16 single-channel e-stop buttons or 8 2-channel e-stop buttons
- E-stop button can be connected directly to BH 5922
- Simple wiring of e-stop buttons
- Extendable in steps of 8 e.g. 16 inputs
- No influence on e-stop system
- Adjustable
- with manual reset (without link X1 / X2)
- with automatic reset (with link X1 / X2)
- Reset button and remote reset
- LED indicators to show the state of the e-stop buttons
- As option direct connection of 2-channel e-stop buttons to BH 5922 / BL 5922
- As option with BCD output (high or low active) or CANopen
- As option with CANopen according to DS301 version 3.0
- BH 5922: width 45 mm BL 5922: width 90 mm

Approvals and Markings

C ϵ

Circuit Diagrams

E-stop button 2-channel connection (8 inputs)
BL 5922.08/01_, BL 5922.08/11_

E-stop button 2-channel connection, 2-channel reset for cross fault monitoring systems (8 inputs)
BL 5922.08/03_, BL 5922.08/13_

E-stop button 2-channel connection, 2-channel reset for systems without cross fault monitoring (8 inputs)
BL 5922.08/02_, BL 5922.08/12

Connection Terminals
Terminal designation Signal description A1+, A2 Supply voltage X1, X2 Remote reset channel 1 X3, X4 Remote reset channel 2 I1A ... I16A, I1B ... I16B Inputs for e-stop button channel 1 I1C ... I8C, I1D ... I8D Inputs for e-stop button channel 2 S11, S12 Inputs for e-stop loop channel 1 S21, S22 Inputs for e-stop loop channel 2 O0, O1, O2, O3 BCD A-B Semiconductor state outputs for channel 1 O0, O1, O2, O3 BCD C-D Semiconductor state outputs for channel 2 CAN L, CAN H CAN-Bus

Applications

Indication of the status of e-stop buttons in an e-stop chain. We recommend to use the BH 5922 together with DOLD E-stop modules (approval).

Function

If all the e-stop buttons are closed all green LEDs are on. If one button is activated the corresponding LED goes off.

The e-stop buttons are connected in series, therefore only one LED goes off even if several buttons are pressed. Only the first activated button in the row is indicated. When this e-stop button is released again the LED lights up again and the LED of the next activated button in the row goes off.

If the variant B_5922/0_2, B_5922/0_4, B_5922/0_5, B_5922/1_2, B_ $5922 / 1 _4$, B_5922/1_5 is connected to a IP 5503 in Plug and Play modus the outputs show the state of the E-stop buttons and the LEDs the state of the status LEDs I1-I8 on the e-stop monitor.

Indicators

green LED „ON":	on, when supply connected (at B_5922/0__, B_5922/1_- only) yellow LED:
green status LEDs:	on, when bus active (only with variants with fieldbus)
	Continuous: when all e-stop buttons are closed

Off:

when corresponding e-stop button is pressed
Flashing of one status LED only when:

- manual reset and
- released e-stop buttons and
- signal not reset

Reset can be made with button on front or with remote reset-button.

Flashing of all status LEDs:
The input S11 of the e-stop monitor is not connected. A reason could be a broken wire between this terminal and S11 of the e-stop module. When several e-stop monitors are connected in series this status also occurs when the previous shows an activated e-stop button.

Notes

When using B_5922/00_ or B_5922/01_ for single channel monitoring or 2 -channel connection of the e-stop chain the e-stop monitor has to be conected to the loop between S11 and $S 12$ of the e-stop module. In this way channel $A B$ is monitored.

In a 2-channel e-stop loop, the e-stop monitor has to be connected to the channel which normally is between the terminals S11 and S12 of the e-stop module. The E-stop monitor and the e-stop module have to be connected to the same DC 24 V power supply. When using an E-stop module with AC-supply the minus-terminal of the e-stop monitor (A2) must be connected to the minus-terminal of the e-stop control voltage (S21 or PE) on the e-stop module.

The product is not a safety component. The use of proven components and proven safety principles in conjunction with Dold emergency stop modules means that the emergency stop chain will not be affected.

Set-up Procedure

CANopen mode (B_5922 /0_ _, B_5922/1_ _)
With switch position "CANopen" the CANopen protocol is active on the interface. The configuration is made with the programming software PN 5501 in conjunction with minimaster IL 5504 / IN 5504 or e.g. with ProCANopen. The corresponding configuration file on CD can be ordered under order no. PN 5501, article no. 0052860

Plug and Play mode (B_5922/0__, B_5922/1__) With switch position "Plug and Play" a variant of the CANopen protocol is active on the interface. The unit setting is done with a switch on the front, see picture below. If a system is on plug and play mode it can be switched over to CANopen protocol at any time.

Address setting Plug and Play mode
To allow the E-stop monitor to communicate with a corresponding device via the CAN-bus the addresses have to be set with the 2 rotational switches on the front according to the table below. Adresses between 1...49, 51... 99 are possible. Adress 0 and 50 cannot be chosen in Plug and Play mode.

E-stop monitor

BH/BL 5922 with address
1
transmits to
\rightarrow
\rightarrow
output module IP 5503 with address 51 99

Example of setting:
left switch 10':
right switch 10° :

Address 14

to position 1×10
to position 4×10^{0}

Notes for Plug and Play mode

On the BL-models with 2-channel monitoring of the e-stop loop 2 addressees and 2 transmission rates can be chosen (channel AB and channel CD). For correct operation the adress settings must be different and the transmisson rate settings must be the same.
The screen of the bus wire has to be connected to A2 of the e-stop monitor.

Set-up procedure

1.) Connect CAN-bus to terminals CAN_L and CAN_H
2.) Terminate the physical end of the bus by connecting a termination resistor of 120Ω between CAN_L and CAN_H on the first and last module of the bus
3.) Connect screen of bus wire to $A 2$
4.) Select transmission rate (e.g. $20 \mathrm{~K} \mathrm{bit/sec}$) using the rotational switch on the front (see drawing)
5.) Select address of the module using rotational switches on the front (see drawing and above example)

Attention: - To communicate in a system configured for Plug and Play modus it is necessary to connect one BH/BL 5922 with adress 1 to the CAN-bus.

- The device adress, the transmission rate and the change of operating mode between CANopen and Plug and Play will only be accepted when the device is powered up.

Description of Data Transmission for units with bus interface

The CANopen transmit PDO has follow structure:

| Read8Inputs | Read8Inputs_old | Status8Inputs | Saved8Inputs | Dummy1 | Dummy2 | Dummy3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | Device_ID

The bytes in the data string have the following content:
Read8Inputs: State of the e-stop buttons

Bit $x=0$	e-stop button
Bit $x=1$	e-stop button not active

Read8Inputs_old: State of e-stop button at time t-1. The designation of the bits is the same as with Read8Inputs
Saved8Inputs: Latched state of the e-stop buttons, if the e-stop monitor is operated in manual reset mode. To detect that the manual reset mode is selected bit 1 in byte Status8Inputs can be used.

Status8Inputs:
Actual state of e-stop monitor

Bit $0=1$	One e-stop button is activated
Bit $1=1$	E-stop monitor aperated in manual reset mode
Bit $2=1$	The e-stop monitor was acknowledgement (activation of reset button or remote reset)
Bit $3=1$	At the beginning of the e-stop loop (terminal S11 or S21) the correct voltage is present. If bit 3 is 0 then
	the wire between e-stop modul and e-stop monitor is interrupted.

Device_ID: Device Id $=0 \times 0 \mathrm{C} \quad$ E-stop monitor for connection of 4 e-stop buttons (.04) Device Id = O X O D E-stop monitor for connection of 8 e-stop buttons (.08)

Dummy 1-3: not used Bytes

Possible state of the bytes depending on the activation of the e-stop buttons:

$\begin{aligned} & \text { OD } \\ & \text { ㅇ } \end{aligned}$	actuation	active			not active			reset		
		E^{*}	ST*	SP	E^{*}	ST*	SP	E*	ST*	SP
	Initial position	FF	OC	FF	FF	OC	FF			
	no S11	FF	04	FF	FF	OC	FF			
	S1 active	FE	0D	FE	FF	OC	FF			
	S2 active	FD	OD	FD	FF	OC	FF			
	S3 active	FB	OD	FB	FF	OC	FF			
	S4 active	F7	OD	F7	FF	OC	FF			
	S5 active	EF	OD	EF	FF	OC	FF			
	S6 active	DF	OD	DF	FF	OC	FF			
	S7 active	BF	OD	BF	FF	OC	FF			
	S8 active	7F	OD	7F	FF	OC	FF			
	Initial position	FF	OE	FF	FF	OE	FF	FF	OE	FF
	no S11	FF	06	FF	FF	OE	FF	FF	OE	FF
	S1 active	FE	0B	FE	FF	OA	FE	FF	OE	FF
	S2 active	FD	OB	FD	FF	OA	FD	FF	OE	FF
	S3 active	FB	OB	FB	FF	OA	FB	FF	OE	FF
	S4 active	F7	OB	F7	FF	OA	F7	FF	OE	FF
	S5 betätigt	EF	OB	EF	FF	OA	EF	FF	OE	FF
	S6 active	DF	OB	DF	FF	OA	DF	FF	OE	FF
	S7 active	BF	OB	BF	FF	OA	BF	FF	OE	FF
	S8 active	7F	OB	7F	FF	OA	7F	FF	OE	FF

*) $E=$ Value for Read8Inputs
ST = Value for Status8Inputs
SP = Value for Saved8Inputs

Technical Data

BCD output, high active: (only with B_5922/001, B_ 5922/011)

O3	O2	O1	O0	Description
0	0	0	0	Input S11 without voltage
0	0	0	1	E-stop 1 active
0	0	1	0	E-stop 2 active
0	0	1	1	E-stop 3 active
0	1	0	0	E-stop 4 active
0	1	0	1	E-stop 5 active
0	1	1	0	E-stop 6 active
0	1	1	1	E-stop 7 active
1	0	0	0	E-stop 8 active
1	1	1	1	no E-stop active

BCD output, low active: (only with B_ 5922/003, B_ 5922/013)

O3 O2	O1 O0	Description		
1	1	1	1	Input S11 without voltage
1	1	1	0	E-stop 1 active
1	1	0	1	E-stop 2 active
1	1	0	0	E-stop 3 active
1	0	1	1	E-stop 4 active
1	0	1	0	E-stop 5 active
1	0	0	1	E-stop 6 active
1	0	0	0	E-stop 7 active
0	1	1	1	E-stop 8 active
0	0	0	0	no E-stop active

BCD output, high active: (only with B_5922/021, B_ 5922/031)
O7 O6 O5 O4:O3 O2 O1 O0|| Description

0	0	0	0	0	0	0	0	Input S11 without voltage
0	0	0	1	0	0	0	1	E-stop 1 active
0	0	1	0	0	0	1	0	E-stop 2 active
0	0	1	1	0	0	1	1	E-stop 3 active
0	1	0	0	0	1	0	0	E-stop 4 active
0	1	0	1	0	1	0	1	E-stop 5 active
0	1	1	0	0	1	1	0	E-stop 6 active
0	1	1	1	0	1	1	1	E-stop 7 active
1	0	0	0	1	0	0	0	E-stop 8 active
1	1	1	1	1	1	1	1	no E-stop active

BCD output, low active: (only with B_5922/023, B_ 5922/033)
O7 O6 O5 O4:O3 O2 O1 O0| Description

Both physical ends of the 2-wire system must be terminated with a 120Ω resistor between the terminals CAN_L and CAN_H.

Technical Data

Input
Nominal voltage U_{N} (A1/A2): $\quad \mathrm{DC} 24 \mathrm{~V}$
Voltage range: $\quad 0,8 \ldots 1,1 \mathrm{U}_{\mathrm{N}}$
Control voltage on S11/S12: DC 24 V
Reset input $\mathrm{X}_{1}, \mathrm{X}_{2}$:
BCD interface:
Output (O0,O1,O2, O3):
switched /auxiliary voltage:
Switching capacity:
Residual voltage:

General Data

Operating mode:
Temperature range:
Operation:
Storage:
Altitude:
EMC
Electrostatic discharge:
Surge proof against wire
bound surges, induced by
high frequency fields:
Fast transients:
Surge voltages
between

wires for power supply:	1 kV	IEC/EN 61 000-4-5
between wire and ground:	2 kV	IEC/EN 61 000-4-5
Interference suppression:	Limit value class A*)	

Interference suppression: Limit value class A*
${ }^{*}$) The device is designed for the usage under industrial conditions (Class A, EN 55011).
When connected to a low voltage public system (Class B, EN 55011) radio interference can be generated.
To avoid this, appropriate measures have to be taken.

Degree of protection	
Housing:	IP 40 IEC/EN 60529
Terminals:	IP 20 IEC/EN 60529
Housing:	Thermoplastic with V0-behaviour to UL subject 94
Vibration resistance:	Amplitude 0,35 mm IEC/EN 60 068-2-6 frequency 10 ... 55 Hz
Climate resistance:	20/060 / 04 IEC/EN 60 068-1
Terminal designation:	EN 50005
Wire connection:	$1 \times 4 \mathrm{~mm}^{2}$ solid or
	$1 \times 2,5 \mathrm{~mm}^{2}$ stranded ferruled or
	$2 \times 1,5 \mathrm{~mm}^{2}$ stranded ferruled
	DIN 46 228-1/-2/-3/-4 or
	$2 \times 2,5 \mathrm{~mm}^{2}$ stranded ferruled
	DIN 46 228-1/-2/-3
Wire fixing:	Terminal screws M3.5, box terminals with wire protection
Mounting:	DIN rail
Weight:	
BH 5922:	approx. 255 g
BL 5922:	approx. 470 g
Dimensions	
Width x height x depth:	
BH 5922:	$45 \times 86 \times 121 \mathrm{~mm}$
BL 5922:	$90 \times 86 \times 121 \mathrm{~mm}$

Standard Type

BH 5922.08 DC 24 V
Article number:
0052427

- for 8 e-stop-buttons, single channel connection
- Nominal voltage U_{N} :

DC 24 V

- Width: 45 mm

BL 5922.08/010 DC 24 V
Article number:
0052430

- for 8 e-stop buttons, 2-channel connection
- Nominal voltage U_{N} :

DC 24 V

- BH 5922: 45 mm width
BL 5922: 90 mm width

Variants

B 59

Ordering example for variants

Accessories

- CANopen PLC IL 5504
- Input / Output Module IN 5509
- Input Module, Digital IP 5502
- Output Module, Digital IP 5503
- Input Module, Analogue IL 5508
- Output Module, Analogue IL 5507

Application Examples

Pic 1: Monitoring of 8 e-stop buttons with e-stop monitor, single-channel connection, e-stop module single channel. Display via 8 LEDs on frontside of the module

Pic 2: Monitoring of 8 e-stop buttons with e-stop monitor, singlechannel connection, e-stop module 2-channel. Remote display of the status of e-stop buttons via CANopen interface.

Application Examples

Pic 3: Monitoring of 16 e-stop buttons with e-stop monitor, single-channel connection, e-stop module 2-channel. BCD-output for remote display of the status of the e-stop buttons

Pic 4: Monitoring of 4 e-stop buttons with e-stop monitor, 2-channel connection, BCD output, single-channel monitoring

Pic 5: Monitoring of 8 e-stop buttons with e-stop monitor, 2-channel connection, BCD output, single-channel monitoring

Pic 6: Monitoring of 8 e-stop buttons with e-stop monitor, 2-channel connection, 2-channel monitoring (2. channel with cross fault monitoring), BCD output

Pic 7: Monitoring of 16 e-stop buttons with e-stop monitor, single-channel connection, single-channel monitoring

Application Examples

Pic 8: Monitoring of 8 e-stop buttons with e-stop monitor, 2-channel connection, 2-channel monitoring cross fault monitoring with CANopen minimaster IL 5504

Application Examples

Pic 9: Monitoring of 16 e-stop buttons with e-stop monitor, single-channel connection, e-stop-module 2-channel, cross fault monitoring. BCD-output for remote display of the status of the e-stop buttons.

